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Abstract

This note presents a personal view of the state of the art in the representation
and manipulation of imprecise and uncertain information by automated processing
systems. To contrast their objectives and characteristics with the sound deductive
procedures of classical logic, methodologies developed for that purpose are usually
described as relying on Approximate Reasoning.

Using a unified descriptive framework, we will argue that, far from being mere
approximations of logically correct procedures, approximate reasoning inethods are
also sound techniques that describe the properties of a set of conceivable states of a
real-world system. This framework, which is based on the logical notion of possible
worlds, permits the description of the various approximate reasoning methods and
techniques and simplifies their comparison. More importantly, our descriptive model
facilitates the understanding of the fundamental conceptual characteristics of the
major methodologies.

We examine first the development of approximate reasoning methods from early
advances to the present state of the art, commenting also on the technical motivation
for the introduction of certain controversial approaches.

Our unifying semantic model is then introduced to explain the formal concepts and
structures of the major approximate reasoning methodologies: classical probability
calculus, the Dempster-Shafer calculus of evidence, and fuzzy (possibilistic) logic.
In particular, we discuss the basic conceptual differences between probabilistic and
possibilistic approaches.

Finally, we take a critical look at the controversy about the need and utility for
diverse methodologies, and assess requirements for future research and development.
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1 Introduction

This note presents a personal view of the state of the art in approximate reasoning,
the name used to describe several methodologies for the development of intelligent
systems capable of manipulating imprecise and uncertain information.

Approximate reasoning techniques loosely based on the calculus of probability
appeared almost simultaneously with the development of expert systems relying on
classical (i.e., two-valued) logic techniques. Soon after these systems were introduced,
other approaches to the treatment of uncertainty and imprecision were also proposed,
both to generalize more or less conventional probabilistic schemes and to capture other
aspects of imperfect knowledge, claimed to have a nonprobabilistic nature.

The short technological history of approximate reasoning methods may be de-
scribed as being, from that moment, one of extreme controversy that has lasted to
this day. Most of the proponents of classical probabilistic treatments, often described,
although vaguely and somewhat misleadingly, as Bayesians,! have doubted the ne-
cessity for the introduction of other conceptual structures and have often sought to
explain those frameworks in terms of probabilistic notions. Proponents of alternative
approaches, on the other hand, have defended their techniques on the strength of
two main arguments: the practical problems associated with the parameter-intensive
procedures of conventional probability, often demanding knowledge of a large number
of probability values; and, the nonprobabilistic nature of the uncertainties associated
with the use of vague concepts.

Much of this disagreement has been clearly caused by misunderstandings about
the fundamental philosophical characteristics of each approach. Lacking a suitable
basis to interpret certain concepts, particularly those related to the “degrees of truth”
of multivalued logics, it has been impossible, until recently, to provide an adequate
framework to discuss fundamental issues in a rational manner.

This position paper on the past evolution of the field, its present state of the art,
and desiderata for future evolution is the result of recent research by the author in
basic semantic issues that are germane to the foundations of approximate reasoning.
The presentation is based on the use of a central unifying framework: a formal model
of the approximate reasoning problem that explains the similarities and differences
between major methodologies. Using this “possible-worlds” model, we will also be
able to compare the rationale of nonmonotonic logic approaches with that of approx-

'The qualifier Bayesian is used in the context of statistics to describe proponents of a statistical
methodology and in the context of the philosophy of probability to denote various subjective views
of probability. In Artificial Intelligence, the term has been loosely applied both to those investigating
approaches based on the probability calculus and, more narrowly, to those espousing the decision-
theoretic methods of subjective probability.



imate reasoning procedures. Although our model is a rigorous formalisim, described
in detail elsewhere [32,33] in connection with the logical foundations of the Dempster-
Shafer calculus of evidence and fuzzy logic, our discussion will be kept as informal as
possible to facilitate understanding our philosophical and technical position.

We will contend that regarding probabilistic and possibilistic approaches as com-
peting alternatives is incorrect and confuses the need to describe different aspects of
reality with the adequacy or ability of probability as a measure of likelihood. We will
also take a critical look at the major claims supporting a narrow view of probability,
based on a subjectivist interpretation that regards all forms of rational decision-
making as necessarily demanding optimization of expected-utility functionals, and
we dispute claims that only such approaches are endowed with either a suitable or a
proven decision-theoretical apparatus.

On the basis of our theoretical arguments, and of recent success in the appli-
cation of various techniques to practical problems, we will also argue that future
accomplishment in the field lies in the rational development of tools leading to mul-
tiple complementary views of the implications of evidence rather than on arbitrary
circumscription to a limited class of techniques and procedures.

2 The Development of Approximate Reasoning

Intelligent systems relying on approximate reasoning techniques [8,39] appeared in the
1970s, approximately at the same time as other systems seeking to emulate the exper-
tise of specialists in diverse fields of endeavor. Problems related to the development
of the expert systems based on classical deductive procedures, however, were primar-
ily related to the need to organize knowledge and its processing in such a manner
as to assure an efficient derivation of the truth value of hypotheses (i.e., either true
or false). Systems such as MYCIN or PROSPECTOR— reasoning about medical
and geological systems, where knowledge is limited and where observations may be
difficult or impossible to make-—were forced to deal, in addition, with issues that, to
this day, have almost completely consumed the attention of approximate reasoning
researchers.

These issues may be generally described as related to the extension of the basic
derivation rule of classical logic, the modus ponens, which states that from the va-
lidity of an antecedent proposition p and that of the implication p — g, it is possible
to derive the validity of the consequent proposition g. Although a conventional ex-
pert system, using classical rules of derivation, could be assumed to have sufficient
information to derive the validity of a hypothesis of interest, whenever knowledge
was scarce Oor uncertain it was necessary to resort to other schemes that qualified
in one way or another the meaning of the truth of propositions. Still imitating the
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network-oriented techniques of truth-value propagation of two-valued logic, the ap-
proximate reasoning schemes developed in early systems sought to propagate numeric
truth values that were loosely related to probabilistic interpretations of uncertainty.

The concept of probability provides a most important tool to describe the state of
systems that are known under less than desirable informational circumstances. Aris-
ing clearly from the need to make decisions despite undesirable knowledge handicaps,
the notion of probability, seriously studied from the seventeenth century, has always
played a major role in human judgment [16].

The appeal of probability as an instrument to assess system behavior is due to the
empirically observed property that is expressed by the long-run stability of occurrence
of certain events. Whether such a pattern of occurrence has been objectively quanti-
fied through experimentation or historical observation (objective interpretation), or
is subjectively expressed by the willingness to gamble with certain stakes {subjec-
tive interpretation), it is clear that it provides a rational basis to formulate rational
expectations about system state. Why would anybody, if such predictable stability
of occurrence could not be assured, be willing to consciously bet on some outcomes
rather than others if the real world defies any attempts to descriptive characteriza-
tion?

Curiously enough, although probabilistic interpretations were always implicitly or
explicitly intended by the developers of early approximate reasoning systems, and
while the underlying calculi reflect such explanations, it seems also clear that the
machinery of these devices was primarily oriented toward the emulation of the propa-
gation schemes of classical logic with truth flowing from node to node through edges
corresponding to implication rules. Approximate truth, measured by numbers asso-
ciated with objective likelihood or expert confidence, also flowed from evidence to
hypothesis in a scheme that generalized the true-false dichotomy of multivalued logic.

Regardless of the clearly intended probabilistic interpretations of those numbers,
misgivings about their meaning and utility were sufficient to plant the seeds of the
ensuing controversy. Concerns about the inability of probability to capture notions of
evidential confirmation led the developers of MYCIN[39], for examiple, to introduce
modified concepts (“certainty factors”) as an alternative to direct use of conditional
probabilities. In spite of subsequent studies showing that such certainty factors were
related to probability values[18], it is clear that these worries were well founded,
having been already eloquently expressed in the works of philosophers of science [34].

Although such concerns are indeed important and, despite some claims to the
contrary, must still be properly addressed, other issues soon captured the attention
of those seeking to develop expert systems with approximate reasoning capabilities.
Beyond certain troublesome issues that were apparent when formulating the proba-
bilistic calculi used by PROSPECTOR, arising from inconsistencies between “expert



estimates” of probability values and the laws of probability, it was also clear to those
engaged in the development of new expert systems that a typical application required
estimation of a very large number of individual probability values[14], which were
neither available or derivable from existing data.

In addition, other researchers, acquainted with the concepts and methods of mul-
tivalued logic [31,13], advanced the notion that some of the “degrees of truth” being
propagated could be interpreted in a nonprobabilistic fashion. The theory of fuzzy
sets, introduced by Zadeh in 1965 [45], had been for some time the focus of attention
of these researchers and soon became a major source of techniques for the treatment
of uncertainty by use of nonprobabilistic schemes.

The variety of approximate reasoning methods arising from this diversity—expressed
as a preference toward either a variedly interpreted, more or less strict application
of classical probability schemes; as approaches seeking the expression of ignorance
about probability values, such as the Dempster-Shafer calculus of evidence; and as
nonprobabilistic schemes like fuzzy logic— have led to a controversy that has endured
to this day.

It has not been possible, until recently, to discuss these approaches with the help
of a unifying framework that facilitates the interpretation of relevant concepts and the
comparison of alternative methodologies. This unifying framework is based on a view
of approximate reasoning problems as those wherein the truth-value of a hypothesis
cannot be deduced from available information.? In other words, several scenarios, all
consistent with evidence, may be conceived. In some of those stuations the hypothesis
is true, while in others it 1s false.

The logical notion that we will use to characterize such conceivable states of affairs,
situations, or scenarios, is the concept of “ possible world” utilized by Carnap [4]
in his logical treatment of the concept of probability, which was also employed by
Nilsson [26] to derive a logic-based methodology for probabilistic reasoning.

3 Possible-World Models

A possible world may be briefly described as a function that assigns one and only one
of the truth values true or false to every proposition (i.e., declarative statement)
about the system that is being reasoned about. If we seek to describe and study
the weather in Menlo Park, for example, the atmospheric conditions at several points
in time are described by assigning specific values to meteorological variables such as
temperature, humidity, and rainfall, or, equivalently, by assigning a truth value to

2Sometimes this characterization is extended to include those cases where that derivation is very
difficult.



propositions such as
The temperature at 3PM was 75°F.

Since the value of system variables is unique (e.g., the temperature cannot be both
75°F and 85°F at the same time), it is clear that each possible world (i.e., an assign-
ment of truth values) must satisfy certain consistency conditions that follow from the
axioms of classical logic.

In approximate reasoning problems, however, we can usually do more to restrict
the extent of the set of possible worlds that may conceivably describe the state of
the system. Typically, the information or knowledge about the state of the system
and its applicable rules of behavior, in spite of its defficiencies, is a major source of
constraints that further limit the extent of the situations that must be considered.
The subset of possible worlds that is logically consistent with this evidence is called
the evidential set, and, in one form or another, is the concern of every approximate
reasoning approach. In any approximate reasoning problem, by definition, some of
these evidential worlds are such that a hypothesis is true in some of them and false
on others, as depicted in Figure 1.

Worlds consisiént with the evidence ‘

Worlds logically inconsistent with the evidence v..

\\\\\

HYPOTHESIS TRUE HYPOTHESIS FALSE

< >
Figure 1: The approximate reasoning problem

The view of approximate reasoning problems that is afforded by this possible-
world perspective also simplifies the understanding of the objective of approximate
reasoning approaches. Lacking, by the nature of the problern, the ability to determine
if the evidence implies whether we are in a situation where a hypothesis is true or in

G}



one where it is false, every approximate reasoning methodology seeks answers to a
different problem: that of describing certain properties of the evidential set.

4 The Semantics of Approximate Reasoning

Our view of approximate reasoning methods as techniques to describe the evidential
subset® e of possible worlds that are consistent with available information now allows
a more detailed look into their philosophical bases.

Probabilistic methods, regardless of their subjective or objective semantics, seek
to estimate measures of the subsets of the evidential set where a hypothesis A is true
and where it is false, i.e., the values

u(h Ae) and p(-hAe),

or other related quantities, such as likelihood ratios or conditional measures with
respect to the evidential set e. The measure p is, however, an aggregate measure of
set extension based on the additive law

p(p)+p(g) =u(pAg) +upVvy),

stating that its value over a set may be derived from knowledge of its value over a
partition of nonintersecting subsets. Regardless of the mechanism used to derive the
weights associated with individual members of the subsets, it should be clear that
interactions and associations between possible worlds (e.g., distances) do not play
any role in such quantities. Simply stated, all that matter are the weights of each
individual point (more generally, each atomic subset) that are then added to gauge
the extent of the subset.

Possibilistic methods, on the other hand, are based on notions of proximity and
resemblance between pairs of possible worlds. This association or similarity is also a
measure, albeit not one that may be expressed in terms of individual weights. Ex-
ploiting the idea that, in many systems, statements that are true in certain situations
remain approximately true in similar instances (e.g., clothing that is appropriate when
the temperature is 75°F will work nearly as well at 78°F), the purpose of possibilistic
techniques is to describe the evidential set in terms of the similarity of its component
possible worlds to other possible worlds used as reference landmarks.

The basic difference between probabilistic and possibilistic methods, therefore,
goes beyond the use of different formulas to derive truth values. The methodologies
are based on different conceptual approaches to the description of the evidential set;

3For simplicity, we refer loosely to sets and propositions are if they were the same objects.



they stress, in probabilistic reasoning, relative measures of set size, such as the ratio of
previously observed true and false cases, while, in possibilistic reasoning, they stress
binary measures of similarity that describe how far is any conceivable scenario from
certain significant situations.

In both approaches, however, the objective is the description of properties of the
evidential set rather than of any of its particular members. By contrast, certain
nonmotonic logic techniques such as circumcription [24] rely on methods to choose
least-exceptional worlds in the evidential set by extension of the “close-world as-
sumption” [30], i.e., the only propositions or predicates that are true are those that
are known to be true. These techniques may be considered general procedures to
represent states of evidential knowledge by choice of prototypical situations. New
evidence, however, may force retraction of some of the assumptions leading to the
selection of other evidential worlds as prototypes. Another class of nonmonotonic
reasoning techniques, while generally fitting the description given above, relies on
prespecified “default” rules[29] to control the choice of prototypical worlds. Since
these rules are usually formulated on the basis of plausibility notions rooted on sta-
tistical information {as in the famous example of Tweety and the flying ability of
most live birds) it is not surprising that the derivation techniques and rules of these
preferential logics—a name indicating their definition of a preferred order for models
of a situation—resemble those of probabilistic reasoning. In fact, recent developments
strongly point to the existence of a common unifying interpretation for both [28,15].

4.1 DProbabilistic Reasoning

There can be little argument from any quarter that frequencies of occurrence of events
satisfy the famous additive law that is axiomatized in the definition of set measure [17].
If propositions that describe event occurrence can only be assigned one and only one
of the classical probability values, then it is obvious that whenever such repetitive
occurrences are counted, then the sum of positive and negative occurrences must add
up to the total number of relevant cases. As far as this objectivist interpretation
of probability is concerned, therefore, there is little doubt that classical formalisms
provide a suitable conceptual tool to capture the behavior of systems that expresses
itself, as experimentally observed, in the form of stable frequency values.

Probabihties, viewed from the perspective of our possible-worlds model, may be
considered as the basis of methods providing answers to a question that is related to
but different from the undecidable issue of the validity of a hypothesis. Unable to
state, because of lack of information, that & is either true or false, we describe instead
the behavior of the system in the long run, by calculating the frequency of occurrence
under similar circumstances.



Probabilistic reasoning schemes may be generally described as concerned with the
computation of the joint probability distribution of several system variables, based
on knowledge of the values of related marginal and conditional probability distribu-
tions. Whenever the required values are available it is possible, conceptually at least,
to derive the required joint distributions. In fact, it may be fairly stated that, once
it was understood that such derivation should be the goal of probabilistic reasoning
systems, the attention of proponents of that methodological perspective has been al-
most completely directed toward the development of methods to simplify the required
knowledge organization and manipulation [27].

Substantial concerns arise, however, regarding what must be done when the needed
probability values are not known. In applied science, when unknown systems and phe-
nomena are investigated, experiments are designed and performed to determine the
basic laws of system behavior, which are typically expressed through quantitative
relationships. If, based on such knowledge, rational courses of action are chosen, the
careful scientist is then able to explain and justify his decisions on the basis of a strong
epistemological apparatus supported both by empirical observation and by rational
deduction. This scheme, which proceeds from information acquisition to decision
making, embodies the experimental method of modern science. From such a per-
spective, probabilistic laws describe certain aspects of system behavior described by
parameters that are estimated using the same methods that are universally accepted
and employed in applied science.

Another view of probability, however, regards probability values as expressions of
the degree of belief of rational decision makers regarding the validity of hypotheses.
This degree of belief i1s quantified by the amount of money that a rational gambler
1s willing to bet in a gamble where the payoff, if the unknown truth value turns out
to be true, is $§1. The probabilistic behavior of these degrees of belief is justified
by a number of axiomatic systems [6,35] providing formal support not only to this
subjectivist interpretation of probability but also to a decision-making methodology
based on the maximization of expected utility. Related axiomatic formulations have
been also developed to support the contention that the only correct procedure for
updating such beliefs is the Bayes-Laplace rule[5]:

Prob Prob (g
Prob(p) = Tt 2ol

A number of researchers have questioned, in the past, the purportedly rational
nature of these axiomatic systems. Their misgivings, which we share, arise both from
questions about the rationality of some specific axioms, as noted by Suppes[42], and
from observation of the behavior of rational decision-makers(including developers of
the axiomatic formalisms) that contradicts the sure-thing principle, as observed by
by Allais [1] and Ellsberg[11]. Kyburg[21] has also raised substantial concerns about
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the epistemological status and soundness of the subjectivist approach. The axiomatic
system of Cox has also been criticized for its assumption that beliefs are measured by a
single number [10] and, again, for the less-than-natural character of some axioms [38].

Proponents of this stringent orthodoxy have often argued that behavior departing
from their theoretical requirements, however prevalent, is actually irrational. Such a
claim, however, suffers from a fundamental methodological flaw. Rationality should
be defined in terms of basic requirements that demand proper consideration of two
fundamental factors: observed empirical evidence and the laws of logic. By requiring
compliance with certain basic tenets of rational behavior, such as the famous avoid-
ance of “dutch books,” subjectivist schemes certainly attempt to meet one of these
requirements, albeit in a limited fashion, as pointed out by Kyburg[21]. By defining
rational behavior as that which results from utilization of the proponent’s favorite
scheme, the characterization of rationality is subjected to a curious argument that
inverts the identity of what is rational with what must be done to ensure rational
behavior. This inversion effectively ensures that the expected utility approach would
always be considered to be rational: in fact, if any other behavior is observed, it
would be, by definition, irrational.

This inversion of premises and conclusions is also apparent in other arguments,
based on pragmatic necessity considerations, for the superiority of the subjectivist
approach. If decisions, even those to obtain more information, must be made, then
the elements required to make the decision (i.e., utility functions and degrees of
belief) must be assessed. Conversely, any decision implies that such values have been,
whether knowingly or not, chosen in some form or fashion. As a result of this close
relation between the assessment of situations and the selection of suitable courses of
action, guaranteed by the fact that values of expected utilities (i.e., numbers} may
always be totally ordered, it is claimed that the subjectivist approach is the only
one among approximate reasoning methods that has a rational decision-theoretic
apparatus.

As appealing as such claims may be to some decision-makers, we must note again
a curious exchange of roles in the scientific discovery process: decisions no longer
follow from empirical observation and rational cogitation; rather, parameters that
describe knowledge follow from a practical need to choose suitable actions. However
pressing may be the need to derive decisions it should be clear that, in the absence of
information, it is usually impossible to determine what is the best course of action.
Any randomizing device would, under such circumstances, provide a total ordering of
possible choices but there is very little to assure us that any behavior based on such
arbitrary basis ought to be called rational.

The ultimate goal of an intelligent system is to take actions based on knowledge
about the actual rather than the believed behavior of a real world system. It is



difficult to see why, as noted by Kyburg [22], the latter should be given much attention
outside psychological research. If applied science is, as generally admitted, a rational
enterprise that seeks to uncover the secrets of the universe and to provide guidelines
to take actions based on such knowledge, then it is clearly desirable that intelligent
agents, in their quest for similar objectives, follow as closely as possible the essential
procedures of the scientific method. The ability to produce decisions regardless of
the extent and pertinence of available knowledge should be regarded as a handicap
rather than as an advantage of a procedure: a fact readily noticed by those engaged in
the solution of important real life problems [12]. As we pointed out before, whenever
such knowledge is acquired, it is typically reported using a format that emphasizes
the quality of the observational method and the strength of the arguments leading
from empirical data to the author’s conclusions rather than on the basis of personal
confidence expressed by willingness to take gambling risks.

I have made a rather long exposition about the dichotomy between subjectivist
and objectivist approaches to probability primarily because I believe this to be a
major cause of a controversy that, beyond considerations that are solely germane to
probabilistic reasoning, extends to the need for techniques that are not directly based
on subjectivist orthodoxy. 1 have also been motivated by the desire to clearly expose
a personal position that is shared by many in the approximate reasoning community
but that is also often misleadingly described as being antiprobabilistic.

Far from being antagonistic to one approach for the simple sake of promoting oth-
ers, my eclectic view is the direct result of practical experience with the development
of models of complex systems, and of close familiarity with the application of math-
ematics to technological problems. Probability is indeed a powerful tool to describe
chance-related aspects of the behavior of real-world systems. Recent contributions of
probabilists and decision scientists, within and without the context of Al such as the
development of network-oriented procedures for probabilistic reasoning [27], are most
important additions to our methodological arsenal.

There are, however, limitations on the capabilities of any tool, wlhether for system
analysis or for any other purpose. As is true of any tool, including all methodolo-
gies described in this note, the applicability of probability is limited by its inability
to perform functions that lie outside its scope, and by practical constraints on our
ability to use it in specific situations. In spite of its unquestionable utility, other ap-
proaches also play a significant role in the description of the possible state of affairs.
These techniques must not be considered to be competitors of probability but, rather,
complementary techniques to enhance the understanding of the real world.

10



4.2 Generalized Probabilistic Reasoning

Those who worry about the potential lack of applicability of techniques based on con-
ventional probability formalisms do not question the conceptual validity of probability
as the appropriate tool to measure the frequency of occurrence of diverse events under
various conditions or, in some cases, the strength of belief of decision-makers. Con-
cerns about the problems caused by ignorance of probability values, however, have
been expressed continuously since the nineteenth century by such prominent logi-
cians as George Boole [3], and have led to the development of approaches to represent
probabilistic ignorance by using subsets of possible probability values.

If, for example, the probability of validity of a proposition p is unknown, an
interval probability method will represent such ignorance by assigning the interval
[0,1] as the value of the missing probability. If it is known, on the other hand, that
an event has better than even chances of occurring, such knowledge will be represented
by the [0.5,1] interval. More generally, probabilistic knowledge may be represented
as a set of possible probability values in a hyperdimensional cube, as in the convex
probabilities approach of Kyburg [20].

The corresponding probabilistic calculi are straightiorward conceptual extensions
of the classic, number based calculus. Such extensions produce, for example, inter-
vals of expected utility values on the basis of knowledge expressed as set of possible
probability values. These intervals may be used, in many instances, to rank decisions
in the same way that such choices are ordered with number-based schemes. When
this ordering is not possible (e.g., overlapping intervals show that under certain sce-
narios A is preferrable to B, while, in other situations, B is to be preferred), the lack
of a clear choice does not imply that the decision-theoretic apparatus is defective.
Rather, the methodology is rich enough to tell us precisely how far empirical knowl-
edge, combined with the laws of rational thought, can take us. If, beyond that point,
1t 1s imperative to do something—a rather unfortunate set of events—any selection
scheme, from that point on, will be as rational as any other (i.e., very little).

Although the manipulation of intervals and sets of possible probability values al-
leviates some conceptual worries, it hardly helps in terms of the ability to perform
the required computations. The situation, unfortunately, is made worse by the need
to represent and manipulate probability bounds for subsets without the simplifying
help that additivity provides for actual probability values. This unfortunate state
of affairs is the primary reason for the popularity that an approach—capable of be-
ing interpreted in terms of interval probabilities— enjoys today as one of the major
methodologies of approximate reasoning. This approach is the Dempster-Shafer cal-
culus of evidence.

Originally developed by Dempster [7] in the context of statistical studies, the ap-
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proach was further developed by Shafer[36] as a non-Bayesian alternative to the
representation and manipulation of degrees of beliefl. Recently [32], application of
possible-world semantic models to the interpretation of its major structures has shown
that the approach is fully consistent with the classical calculus of probability, includ-
ing the Bayes-Laplace formula. Smets [40] has also recently reviewed the structures
of the calculus of evidence proposing, in addition, unconventional extensions based
on a nonprobabilistic concept of belief.

The calculus of evidence may be readily understood using our basic mode] if it is
recalled that, whenever assessing the validity of a hypothesis on the basis of emprical
knowledge, there are three possible logical outcomes of any reasoning process: the
hypothesis may he proved to be true, the hypothesis may be proved to be false, or
the information may be insufficient to make either of those conclusions.

If the notation Kp is used to denote the set of situations, i.e., possible worlds,
where p can be proved true, if K—p correspondingly denotes those cases where it
can be proved false, and if Ip denotes the sel of situations where the truth value of
p cannot be established without ambiguity, then it is obvious that any probability
function Prob(-) will satisfy the equation

Prob(Kp) + Prob{(K-p) + Prob(Ip) =1.

Furthermore, since the probability of Ip may be positive, it will be true, in general,
that '
Prob(Kp) + Prob(K-p) <1.

The calculus of evidence is based on the representation of the probabilistic in-
formation conveyed by evidence by means of belief functions. These functions may
be readily interpreted in terms of the above probabilities of provability through the
equation

Bel(p) = Prob(Kp).

More importantly, these belief functions are usually expressible in a compact form by
means of basic probability assignments or mass functions. These functions m, which
are also defined over propositions, are related to belief functions by the equation

Bel(p) = 3 m(q).

F=p

The ability to represent and manipulale probability intervals by means of mass func-
tions i1s the major reason for the appeal of the Dempster-Shafer methodology.

Although, in a typical decision problem, we are interested in the truth of p rather
than its provability, lack of adequate information precludes determination of the prob-
ability of such truth. In general, however, it may be said that

Bel(p) < Prob(p) <1~ Bel(=p).
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Furthermore, these bounds cannot be improved.

This interpretation of the Dempster-Shafer calculus as concerned with probabili-
ties of provability, as called by Pearl [27], was first formalized by the author using a
possible-worlds model based on the use of a modal logic called epistemic logic. The
formal system, which is equivalent to the modal system S5 {19] used by Moore [25] in
his pioneer work on the application of modal logic concepts to artifictal intelligence
problems, is enhanced by consideration of probability distributions over the set of
possible worlds. In particular, the unary operator K represents the knowledge of a
rational agent to prove that a proposition may be known or proved to be true.

The probability of the set of all possible worlds where a proposition p is the most
specific proposition that is known to be true, called the epistemic set, corresponds to
the values of the mass function. In any possible world, this most specific knowledge is
the conjunction of all propositions thal are known to be true in that possible worid.

The semantic model of the Dempster-Shafer theory also validates the so-called
Dempster’s rule of combination, which permits the combination of belief and mass
functions corresponding to evidential observations made under certain conditions of
independence. When such conditions are not valid, use of this formula leads, of
course, to erroneous results, often, although incorrectly, considered to be an essen-
tial handicap of the evidential reasoning approach, rather than a consequence of its
misapplication.

From our perspective the only substantial example of such misapplication is that
which results from improper use of the Dempster’s rule of conditioning, i.e., a par-
ticular use of the rule of combination that is valid only under special circumstances,
as a substitute for Bayes’ rule. Certain methodological limitations of the calculus of
evidence, notably the lack of methods to handle with sufficient generality the coun-
terparts of conventional conditional probabilities, are more worrisome, in our opinion,
than any distress arising from its misuse or ils supposed lack of a decision-making
apparatus.

4.3 Possibilistic Reasoning

Our basic semantic model also provides straightforward interpretations [33] for the
major concepts and structures of possibility theory (46,9): an approach to approxi-
mate reasoning derived from multivalued logics [31] and the theory of fuzzy sets [45].
The major formal tool that enhances our understanding of such structures is not a
probabilistic measure of set size but, rather, a binary measure of proximity or dis-
tance, called a similarity relation.

Similarity considerations play a major role in human cognitive processes [44]. In-
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formally, all such analogical processes are based on the notion that the validity of
some propositions in a given situation extends also to other situations where the
same basic conditions are prevalent.

In our model of possibilistic structures, the similarity between states of affairs is
expressed by a function that assigns a number between 0 and 1 to every pair of possible
worlds. The value of that function S{w, w') for a pair of possible worlds quantifies the
extent of resemblance between pairs of situations or scenarios, as evaluated from the
viewpoint of the particular problem being considered. In a decision-making problem,
for example, the decision maker may define such measures to describe the extent by
which the consequences of certain decisions resemble desirable goals or objectives.

The highest similarity value, 1, indicates that, from the perspective of the system
being studied, both situations are indistinguishable. The lowest value, 0, indicates
that knowlege of what is true in one possible world does not help to derive what is
true in the other.

Similarity scales are the measurement sticks used to describe the extent by which
certain results may be extrapolated from one possible world to another. Unlike proba-
bility functions, which correspond to either measurable properties of physical systems
or states of belief of rational agents, the similarity relations simply provide a mecha-
nism to describe resemblance between states of affairs.

Similarity relations may also be regarded as generalizations of the modal-logic
notion of accessibility or conceivability [19] by introduction of multiple binary relations
R, between possible worlds (one for each value of o between 0 and 1), defined by

R.(w,w') if and only if S(w,w') > a.

These relations also justify the use of a possibilistic terminology that regards proposi-
tions as being possible to some degree, thereby generalizing the classical definition of
the modal operator for possible truth in a manner similar to that used by Lewis [23]
in his treatment of counterfactual statements.

Certain requirements must be imposed to assure that similarity functions truly
represent notions of resemblance between possible situations. Similarities between
identical scenarios, for example, should have a value of 1, the highest possible value.
Furthermore, if two different possible worlds are to be distinguished by means of
similarity values, then it also makes sense to require that their similarity be strictly
less than 1. It is likewise natural to require that the similarity between two particular
scenarios be a symmetric function, i.e., w resembles w’ as much as w' resembles w.

Beyond these properties of reflexivity and symmetry, it is also necessary to require
that similarities satisfy a generalized form of transivity. If, given three possible worlds
w, w' and w”, the worlds w and w’ are highly similar while w’ and w"” are also highly
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similar, it will be unreasonable to say that w and w” may be highly dissimilar. The
value of S(w,w") must, therefore, be bounded by below by a function of S(w, w’) and
S{w’,w"), as expressed by the condition

S(w,w") > S(w,w’) ® S(w',w"),

which uses the binary operation ® to denote the required function.

If certain reasonable requirements are imposed upon the function &, it is easy
to see that this function has the properties of trianguler norms, which are usually
introduced in multivalued logics [43] to relate the truth value of a conjunction p A ¢
to the degrees of truth of p and ¢. These functions are motivated, in our model, by
considerations that are related solely to metric concepts of proximity and resemblance.
Important examples of triangular norms are given by the functions

a ® b= min(a,d), a®b=max(a+b—-1,0), and a&b=ab,

called the Zadeh, Lukasiewicz, and product triangular norms, respectively.

Similarity functions are trivially related by the relation
§=1-5,

to functions é that have the properties of a distance or metric function. In the
particular case where & is the triangular norm of Lukasiewicz, then § is an ordinary
metric or distance, which obeys the well-known triangular inequality

8w, w") < §lw,w') + §(w',w").

If ® is the Zadeh triangular norm, on the other hand, the transitivity property is
equivalent to the stronger uftrametric inequality

§(w,w") < max (§{w,w'), §(w',w")).

The structures introduced by similarity relations may be readily applied to gen-
eralize the subset inclusion relations that are the fundamental basis of deductive
reasoning. These inclusion relations are typically expressed by conditional proposi-
tions of the form “ If ¢, then p.” stating that any state of affairs where g is true is such
that p is also true. These conditional propositions, which permit the derivation of
true propositions from knowledge of the truth of others by means of the rule of modus
ponens, may be also stated using similarity structures by saying that any ¢-world has
a p-world (i.e., itself) that is as similar as possible to it.

The ability to characterize proximity between possible worlds using a continuous
scale of similarity provides for a more general characterization of the inclusion rela-
tions that hold between subsets of possible worlds (i.e., propositions). If the subset
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of g-worlds is not included in that of p-worlds, we may, however, use the similarity
structure to quantify the amount of stretching required to reach a p-world from any
g-world. The degree of implication function defined by the expression

I{p]g¢) = inf sup S(w,w’),

w'kqg whp

which is related to the well-known Hausdorfl distance, provides such quantification
as the size of the topological neighborhood of p that encloses ¢, as shown in Figure 2.

Figure 2: Degree of implication

The ability to express relationships between neighborhoods of different sets of
possible worlds or, equivalently, between propositions permits the generalization of
the modus ponens by use of the transitive propertf of the degree of implication
function:

plr) 21pla&lg]r),
illustrated in Figure 3.

Figure 3: The generalized modus ponens.

The generalized modus ponens rule of Zadeh [46] is expressed by means of pos-
sibility distributions, which are themselves defined in terms of similarities between
evidential worlds and those satisfying a given proposition p[33}. From the viewpoint
of our similarity-based model, the generalized modus ponens may be thought of as
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a sound rule of logical extrapolation that exploits similarities between conceivable
scenarios or situations. The fundamental topological structures that permit this type
of reasoning are clearly different in character and nature than the measures of set
extension that are the conceptual basis of probabilistic reasoning.

In closing, it is important to mention that posibilistic reasoning based on fuzzy
logic has led recently to the implementation of a large number of successful commercial
products [41]. These systems, which have primarily exploited the applicability of the
technology to a variety of control devices, provide a clear indication of the usefulness
of these ideas, which now also rest on clearly understandable theoretical foundations.

5 Looking ahead

The ability to explain the role and utility of the major approximate reasoning ap-
proaches by use of a unifying framework provides the rational basis to resolve most
of the issues about relative importance and necessity. Rather than supporting any
partisan contention about the superiority of one methodology over the others, this
framework shows instead that a variety of tools are needed to produce effective de-
scriptions of evidence and its implications.

Each methodology may play a significant role in every potential application of
approximate reasoning techniques: a role that complements rather than substitutes
forf other procedures. In the absence of compelling theoretical arguments for rejecting
any approximate reasoning position and in the presence of substantial solid evidence
of their usefulness and applicability, it is irrational to maintain positions that are
needlesly divisive and polemic.

Recent investigations showing that there exist substantial functional rather than
conceptual similarities between the network-oriented methods of conventional prob-
abilistic schemes and the calculus of evidence [37], and indicating that fuzzy-set con-
cepts and multivalued logic may be successfully blended to represent vague knowledge
about probabilities [2], clearly point the way toward a more productive research col-
laboration between approximate reasoning specialists.

This collaboration should stress application of all valid concepts to the solution of
practical problems rather than further continuation of the controversy about techno-
logical superiority or necessity. In particular, the example set by Japanese researchers
in the development of a large number of commercial products of evident applicability
illuminates the path that must be followed. The future lies in the solution of practi-
cal problems, both because of the direct importance of those problems, and because
conceptual developments and clarifications usually follow, as is the case of the work
discussed in this note, from the experiences gained producing such solutions. Having
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established needed conceptual bases to clarify controversial issues, we hope it is clear
that this is the time to apply ideas rather than to continue to argue about them.
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